3,387 research outputs found

    Cloning and characterization of 5 '-upstream region of human phospholipase C-beta 2 gene

    Get PDF
    5 ' -upstream region of the phospholipase C-beta2 gene, 810 bp, was cloned and characterized. S1 nuclease mapping and primer extension analyses revealed that a single transcriptional start site locates at 284 nucleotides upstream from the beginning of translation. The 5 ' -upstream region lacks both TATA motif and typical initiator sequence, but retains CC-rich segment. Two putative regulatory regions, a negative region (-636/-588) and a positive region (-98/-13) were identified in the upstream region of PLC-beta2 gene. We suggest that the transcription of PLC-beta2 may be regulated by binding of regulatory proteins to the negative and/or positive regulatory regions located in the upstream of the geneopen

    Identity, reputation and social interaction with an application to sequential voting

    Get PDF
    We analyze binary choices in a random utility model assuming that the agent's preferences are affected by conformism (with respect to the behavior of the society) and coherence (with respect to his identity). We apply the analysis to sequential voting when voters like to win

    Mid-Upper Arm Circumference based Nutrition Programming: evidence for a new approach in regions with high burden of Acute Malnutrition

    Get PDF
    In therapeutic feeding programs (TFP), mid-upper arm circumference (MUAC) shows advantages over weight-for-height Z score (WHZ) and is recommended by the World Health Organization (WHO) as an independent criterion for screening children 6-59 months old. Here we report outcomes and treatment response from a TFP using MUAC ≤118 mm or oedema as sole admission criteria for severe acute malnutrition (SAM)

    Persistence of anticancer activity in berry extracts after simulated gastrointestinal digestion and colonic fermentation

    Get PDF
    Fruit and vegetable consumption is associated at the population level with a protective effect against colorectal cancer. Phenolic compounds, especially abundant in berries, are of interest due to their putative anticancer activity. After consumption, however, phenolic compounds are subject to digestive conditions within the gastrointestinal tract that alter their structures and potentially their function. However, the majority of phenolic compounds are not efficiently absorbed in the small intestine and a substantial portion pass into the colon. We characterized berry extracts (raspberries, strawberries, blackcurrants) produced by in vitro-simulated upper intestinal tract digestion and subsequent fecal fermentation. These extracts and selected individual colonic metabolites were then evaluated for their putative anticancer activities using in vitro models of colorectal cancer, representing the key stages of initiation, promotion and invasion. Over a physiologically-relevant dose range (0–50 µg/ml gallic acid equivalents), the digested and fermented extracts demonstrated significant anti-genotoxic, anti-mutagenic and anti-invasive activity on colonocytes. This work indicates that phenolic compounds from berries undergo considerable structural modifications during their passage through the gastrointestinal tract but their breakdown products and metabolites retain biological activity and can modulate cellular processes associated with colon cancer

    The catalytic subunit of the system L1 amino acid transporter (S<i>lc7a5</i>) facilitates nutrient signalling in mouse skeletal muscle

    Get PDF
    The System L1-type amino acid transporter mediates transport of large neutral amino acids (LNAA) in many mammalian cell-types. LNAA such as leucine are required for full activation of the mTOR-S6K signalling pathway promoting protein synthesis and cell growth. The SLC7A5 (LAT1) catalytic subunit of high-affinity System L1 functions as a glycoprotein-associated heterodimer with the multifunctional protein SLC3A2 (CD98). We generated a floxed Slc7a5 mouse strain which, when crossed with mice expressing Cre driven by a global promoter, produced Slc7a5 heterozygous knockout (Slc7a5+/-) animals with no overt phenotype, although homozygous global knockout of Slc7a5 was embryonically lethal. Muscle-specific (MCK Cre-mediated) Slc7a5 knockout (MS-Slc7a5-KO) mice were used to study the role of intracellular LNAA delivery by the SLC7A5 transporter for mTOR-S6K pathway activation in skeletal muscle. Activation of muscle mTOR-S6K (Thr389 phosphorylation) in vivo by intraperitoneal leucine injection was blunted in homozygous MS-Slc7a5-KO mice relative to wild-type animals. Dietary intake and growth rate were similar for MS-Slc7a5-KO mice and wild-type littermates fed for 10 weeks (to age 120 days) with diets containing 10%, 20% or 30% of protein. In MS-Slc7a5-KO mice, Leu and Ile concentrations in gastrocnemius muscle were reduced by ∼40% as dietary protein content was reduced from 30 to 10%. These changes were associated with >50% decrease in S6K Thr389 phosphorylation in muscles from MS-Slc7a5-KO mice, indicating reduced mTOR-S6K pathway activation, despite no significant differences in lean tissue mass between groups on the same diet. MS-Slc7a5-KO mice on 30% protein diet exhibited mild insulin resistance (e.g. reduced glucose clearance, larger gonadal adipose depots) relative to control animals. Thus, SLC7A5 modulates LNAA-dependent muscle mTOR-S6K signalling in mice, although it appears non-essential (or is sufficiently compensated by e.g. SLC7A8 (LAT2)) for maintenance of normal muscle mass

    Entropic Tension in Crowded Membranes

    Get PDF
    Unlike their model membrane counterparts, biological membranes are richly decorated with a heterogeneous assembly of membrane proteins. These proteins are so tightly packed that their excluded area interactions can alter the free energy landscape controlling the conformational transitions suffered by such proteins. For membrane channels, this effect can alter the critical membrane tension at which they undergo a transition from a closed to an open state, and therefore influence protein function \emph{in vivo}. Despite their obvious importance, crowding phenomena in membranes are much less well studied than in the cytoplasm. Using statistical mechanics results for hard disk liquids, we show that crowding induces an entropic tension in the membrane, which influences transitions that alter the projected area and circumference of a membrane protein. As a specific case study in this effect, we consider the impact of crowding on the gating properties of bacterial mechanosensitive membrane channels, which are thought to confer osmoprotection when these cells are subjected to osmotic shock. We find that crowding can alter the gating energies by more than 2  kBT2\;k_BT in physiological conditions, a substantial fraction of the total gating energies in some cases. Given the ubiquity of membrane crowding, the nonspecific nature of excluded volume interactions, and the fact that the function of many membrane proteins involve significant conformational changes, this specific case study highlights a general aspect in the function of membrane proteins.Comment: 20 pages (inclduing supporting information), 4 figures, to appear in PLoS Comp. Bio

    Combining classifiers for robust PICO element detection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Formulating a clinical information need in terms of the four atomic parts which are Population/Problem, Intervention, Comparison and Outcome (known as PICO elements) facilitates searching for a precise answer within a large medical citation database. However, using PICO defined items in the information retrieval process requires a search engine to be able to detect and index PICO elements in the collection in order for the system to retrieve relevant documents.</p> <p>Methods</p> <p>In this study, we tested multiple supervised classification algorithms and their combinations for detecting PICO elements within medical abstracts. Using the structural descriptors that are embedded in some medical abstracts, we have automatically gathered large training/testing data sets for each PICO element.</p> <p>Results</p> <p>Combining multiple classifiers using a weighted linear combination of their prediction scores achieves promising results with an <it>f</it>-measure score of 86.3% for P, 67% for I and 56.6% for O.</p> <p>Conclusions</p> <p>Our experiments on the identification of PICO elements showed that the task is very challenging. Nevertheless, the performance achieved by our identification method is competitive with previously published results and shows that this task can be achieved with a high accuracy for the P element but lower ones for I and O elements.</p

    DNA resection in eukaryotes: deciding how to fix the break

    Get PDF
    DNA double-strand breaks are repaired by different mechanisms, including homologous recombination and nonhomologous end-joining. DNA-end resection, the first step in recombination, is a key step that contributes to the choice of DSB repair. Resection, an evolutionarily conserved process that generates single-stranded DNA, is linked to checkpoint activation and is critical for survival. Failure to regulate and execute this process results in defective recombination and can contribute to human disease. Here, I review recent findings on the mechanisms of resection in eukaryotes, from yeast to vertebrates, provide insights into the regulatory strategies that control it, and highlight the consequences of both its impairment and its deregulation

    A pilot randomised double blind controlled trial of the efficacy of purified fatty acids for the treatment of women with endometriosis-associated pain (PurFECT):study protocol

    Get PDF
    Abstract Background Endometriosis affects 6–10% of women and is associated with debilitating pelvic pain. It costs the UK > £2.8 billion per year in loss of productivity. Endometriosis can be managed by surgical excision or medically by ovarian suppression. However, ~ 75% symptoms recur after surgery and available medical treatments have undesirable side effects and are contraceptive. Omega-3 purified fatty acids (PUFA) have been shown in animal models to reduce factors that are thought to lead to endometriosis-associated pain, have minimal side effects, and no effects on fertility. This paper presents a protocol for a two-arm, pilot parallel randomised controlled trial (RCT) which aims to inform the planning of a future multicentre trial to evaluate the efficacy of Omega-3 PUFA in the management of endometriosis-associated pain in women. Methods The study will recruit women with endometriosis over a 12-month period in the National Health Service (NHS) Lothian, UK, and randomise them to 8 weeks of treatment with Omega-3 PUFA or comparator (olive oil). The primary objective is to assess recruitment and retention rates. The secondary objectives are to determine the effectiveness/acceptability to participants of the proposed methods of recruitment/randomisation/treatments/questionnaires, to inform the sample size calculation and to refine the research methodology for a future large randomised controlled trial. Response to treatment will be monitored by pain scores and questionnaires assessing physical and emotional function compared at baseline and 8 weeks. Discussion We recognise that there may be potential difficulties in mounting a large randomised controlled trial for endometriosis to assess Omega-3 PUFA because they are a dietary supplement readily available over the counter and already used by women with endometriosis. We have therefore designed this pilot study to assess practical feasibility and following the ‘Initiative on Methods, Measurement, and Pain Assessment in Clinical Trials’ recommendations for the design of chronic pain trials. Trial registration ISRCTN4420234

    Inhibiting LXRα phosphorylation in hematopoietic cells reduces inflammation and attenuates atherosclerosis and obesity in mice

    Get PDF
    Atherosclerosis and obesity share pathological features including inflammation mediated by innate and adaptive immune cells. LXRα plays a central role in the transcription of inflammatory and metabolic genes. LXRα is modulated by phosphorylation at serine 196 (LXRα pS196), however, the consequences of LXRα pS196 in hematopoietic cell precursors in atherosclerosis and obesity have not been investigated. To assess the importance of LXRα phosphorylation, bone marrow from LXRα WT and S196A mice was transplanted into Ldlr-/- mice, which were fed a western diet prior to evaluation of atherosclerosis and obesity. Plaques from S196A mice showed reduced inflammatory monocyte recruitment, lipid accumulation, and macrophage proliferation. Expression profiling of CD68+ and T cells from S196A mouse plaques revealed downregulation of pro-inflammatory genes and in the case of CD68+ upregulation of mitochondrial genes characteristic of anti-inflammatory macrophages. Furthermore, S196A mice had lower body weight and less visceral adipose tissue; this was associated with transcriptional reprograming of the adipose tissue macrophages and T cells, and resolution of inflammation resulting in less fat accumulation within adipocytes. Thus, reducing LXRα pS196 in hematopoietic cells attenuates atherosclerosis and obesity by reprogramming the transcriptional activity of LXRα in macrophages and T cells to promote an anti-inflammatory phenotype
    corecore